|
|
( function () {
const _object_pattern = /^[og]\s*(.+)?/; // mtllib file_reference
const _material_library_pattern = /^mtllib /; // usemtl material_name
const _material_use_pattern = /^usemtl /; // usemap map_name
const _map_use_pattern = /^usemap /; const _face_vertex_data_separator_pattern = /\s+/;
const _vA = new THREE.Vector3();
const _vB = new THREE.Vector3();
const _vC = new THREE.Vector3();
const _ab = new THREE.Vector3();
const _cb = new THREE.Vector3();
const _color = new THREE.Color();
function ParserState() {
const state = { objects: [], object: {}, vertices: [], normals: [], colors: [], uvs: [], materials: {}, materialLibraries: [], startObject: function ( name, fromDeclaration ) {
// If the current object (initial from reset) is not from a g/o declaration in the parsed
// file. We need to use it for the first parsed g/o to keep things in sync.
if ( this.object && this.object.fromDeclaration === false ) {
this.object.name = name; this.object.fromDeclaration = fromDeclaration !== false; return;
}
const previousMaterial = this.object && typeof this.object.currentMaterial === 'function' ? this.object.currentMaterial() : undefined;
if ( this.object && typeof this.object._finalize === 'function' ) {
this.object._finalize( true );
}
this.object = { name: name || '', fromDeclaration: fromDeclaration !== false, geometry: { vertices: [], normals: [], colors: [], uvs: [], hasUVIndices: false }, materials: [], smooth: true, startMaterial: function ( name, libraries ) {
const previous = this._finalize( false ); // New usemtl declaration overwrites an inherited material, except if faces were declared
// after the material, then it must be preserved for proper MultiMaterial continuation.
if ( previous && ( previous.inherited || previous.groupCount <= 0 ) ) {
this.materials.splice( previous.index, 1 );
}
const material = { index: this.materials.length, name: name || '', mtllib: Array.isArray( libraries ) && libraries.length > 0 ? libraries[ libraries.length - 1 ] : '', smooth: previous !== undefined ? previous.smooth : this.smooth, groupStart: previous !== undefined ? previous.groupEnd : 0, groupEnd: - 1, groupCount: - 1, inherited: false, clone: function ( index ) {
const cloned = { index: typeof index === 'number' ? index : this.index, name: this.name, mtllib: this.mtllib, smooth: this.smooth, groupStart: 0, groupEnd: - 1, groupCount: - 1, inherited: false }; cloned.clone = this.clone.bind( cloned ); return cloned;
} }; this.materials.push( material ); return material;
}, currentMaterial: function () {
if ( this.materials.length > 0 ) {
return this.materials[ this.materials.length - 1 ];
}
return undefined;
}, _finalize: function ( end ) {
const lastMultiMaterial = this.currentMaterial();
if ( lastMultiMaterial && lastMultiMaterial.groupEnd === - 1 ) {
lastMultiMaterial.groupEnd = this.geometry.vertices.length / 3; lastMultiMaterial.groupCount = lastMultiMaterial.groupEnd - lastMultiMaterial.groupStart; lastMultiMaterial.inherited = false;
} // Ignore objects tail materials if no face declarations followed them before a new o/g started.
if ( end && this.materials.length > 1 ) {
for ( let mi = this.materials.length - 1; mi >= 0; mi -- ) {
if ( this.materials[ mi ].groupCount <= 0 ) {
this.materials.splice( mi, 1 );
}
}
} // Guarantee at least one empty material, this makes the creation later more straight forward.
if ( end && this.materials.length === 0 ) {
this.materials.push( { name: '', smooth: this.smooth } );
}
return lastMultiMaterial;
} }; // Inherit previous objects material.
// Spec tells us that a declared material must be set to all objects until a new material is declared.
// If a usemtl declaration is encountered while this new object is being parsed, it will
// overwrite the inherited material. Exception being that there was already face declarations
// to the inherited material, then it will be preserved for proper MultiMaterial continuation.
if ( previousMaterial && previousMaterial.name && typeof previousMaterial.clone === 'function' ) {
const declared = previousMaterial.clone( 0 ); declared.inherited = true; this.object.materials.push( declared );
}
this.objects.push( this.object );
}, finalize: function () {
if ( this.object && typeof this.object._finalize === 'function' ) {
this.object._finalize( true );
}
}, parseVertexIndex: function ( value, len ) {
const index = parseInt( value, 10 ); return ( index >= 0 ? index - 1 : index + len / 3 ) * 3;
}, parseNormalIndex: function ( value, len ) {
const index = parseInt( value, 10 ); return ( index >= 0 ? index - 1 : index + len / 3 ) * 3;
}, parseUVIndex: function ( value, len ) {
const index = parseInt( value, 10 ); return ( index >= 0 ? index - 1 : index + len / 2 ) * 2;
}, addVertex: function ( a, b, c ) {
const src = this.vertices; const dst = this.object.geometry.vertices; dst.push( src[ a + 0 ], src[ a + 1 ], src[ a + 2 ] ); dst.push( src[ b + 0 ], src[ b + 1 ], src[ b + 2 ] ); dst.push( src[ c + 0 ], src[ c + 1 ], src[ c + 2 ] );
}, addVertexPoint: function ( a ) {
const src = this.vertices; const dst = this.object.geometry.vertices; dst.push( src[ a + 0 ], src[ a + 1 ], src[ a + 2 ] );
}, addVertexLine: function ( a ) {
const src = this.vertices; const dst = this.object.geometry.vertices; dst.push( src[ a + 0 ], src[ a + 1 ], src[ a + 2 ] );
}, addNormal: function ( a, b, c ) {
const src = this.normals; const dst = this.object.geometry.normals; dst.push( src[ a + 0 ], src[ a + 1 ], src[ a + 2 ] ); dst.push( src[ b + 0 ], src[ b + 1 ], src[ b + 2 ] ); dst.push( src[ c + 0 ], src[ c + 1 ], src[ c + 2 ] );
}, addFaceNormal: function ( a, b, c ) {
const src = this.vertices; const dst = this.object.geometry.normals;
_vA.fromArray( src, a );
_vB.fromArray( src, b );
_vC.fromArray( src, c );
_cb.subVectors( _vC, _vB );
_ab.subVectors( _vA, _vB );
_cb.cross( _ab );
_cb.normalize();
dst.push( _cb.x, _cb.y, _cb.z ); dst.push( _cb.x, _cb.y, _cb.z ); dst.push( _cb.x, _cb.y, _cb.z );
}, addColor: function ( a, b, c ) {
const src = this.colors; const dst = this.object.geometry.colors; if ( src[ a ] !== undefined ) dst.push( src[ a + 0 ], src[ a + 1 ], src[ a + 2 ] ); if ( src[ b ] !== undefined ) dst.push( src[ b + 0 ], src[ b + 1 ], src[ b + 2 ] ); if ( src[ c ] !== undefined ) dst.push( src[ c + 0 ], src[ c + 1 ], src[ c + 2 ] );
}, addUV: function ( a, b, c ) {
const src = this.uvs; const dst = this.object.geometry.uvs; dst.push( src[ a + 0 ], src[ a + 1 ] ); dst.push( src[ b + 0 ], src[ b + 1 ] ); dst.push( src[ c + 0 ], src[ c + 1 ] );
}, addDefaultUV: function () {
const dst = this.object.geometry.uvs; dst.push( 0, 0 ); dst.push( 0, 0 ); dst.push( 0, 0 );
}, addUVLine: function ( a ) {
const src = this.uvs; const dst = this.object.geometry.uvs; dst.push( src[ a + 0 ], src[ a + 1 ] );
}, addFace: function ( a, b, c, ua, ub, uc, na, nb, nc ) {
const vLen = this.vertices.length; let ia = this.parseVertexIndex( a, vLen ); let ib = this.parseVertexIndex( b, vLen ); let ic = this.parseVertexIndex( c, vLen ); this.addVertex( ia, ib, ic ); this.addColor( ia, ib, ic ); // normals
if ( na !== undefined && na !== '' ) {
const nLen = this.normals.length; ia = this.parseNormalIndex( na, nLen ); ib = this.parseNormalIndex( nb, nLen ); ic = this.parseNormalIndex( nc, nLen ); this.addNormal( ia, ib, ic );
} else {
this.addFaceNormal( ia, ib, ic );
} // uvs
if ( ua !== undefined && ua !== '' ) {
const uvLen = this.uvs.length; ia = this.parseUVIndex( ua, uvLen ); ib = this.parseUVIndex( ub, uvLen ); ic = this.parseUVIndex( uc, uvLen ); this.addUV( ia, ib, ic ); this.object.geometry.hasUVIndices = true;
} else {
// add placeholder values (for inconsistent face definitions)
this.addDefaultUV();
}
}, addPointGeometry: function ( vertices ) {
this.object.geometry.type = 'Points'; const vLen = this.vertices.length;
for ( let vi = 0, l = vertices.length; vi < l; vi ++ ) {
const index = this.parseVertexIndex( vertices[ vi ], vLen ); this.addVertexPoint( index ); this.addColor( index );
}
}, addLineGeometry: function ( vertices, uvs ) {
this.object.geometry.type = 'Line'; const vLen = this.vertices.length; const uvLen = this.uvs.length;
for ( let vi = 0, l = vertices.length; vi < l; vi ++ ) {
this.addVertexLine( this.parseVertexIndex( vertices[ vi ], vLen ) );
}
for ( let uvi = 0, l = uvs.length; uvi < l; uvi ++ ) {
this.addUVLine( this.parseUVIndex( uvs[ uvi ], uvLen ) );
}
} }; state.startObject( '', false ); return state;
} //
class OBJLoader extends THREE.Loader {
constructor( manager ) {
super( manager ); this.materials = null;
}
load( url, onLoad, onProgress, onError ) {
const scope = this; const loader = new THREE.FileLoader( this.manager ); loader.setPath( this.path ); loader.setRequestHeader( this.requestHeader ); loader.setWithCredentials( this.withCredentials ); loader.load( url, function ( text ) {
try {
onLoad( scope.parse( text ) );
} catch ( e ) {
if ( onError ) {
onError( e );
} else {
console.error( e );
}
scope.manager.itemError( url );
}
}, onProgress, onError );
}
setMaterials( materials ) {
this.materials = materials; return this;
}
parse( text ) {
const state = new ParserState();
if ( text.indexOf( '\r\n' ) !== - 1 ) {
// This is faster than String.split with regex that splits on both
text = text.replace( /\r\n/g, '\n' );
}
if ( text.indexOf( '\\\n' ) !== - 1 ) {
// join lines separated by a line continuation character (\)
text = text.replace( /\\\n/g, '' );
}
const lines = text.split( '\n' ); let result = [];
for ( let i = 0, l = lines.length; i < l; i ++ ) {
const line = lines[ i ].trimStart(); if ( line.length === 0 ) continue; const lineFirstChar = line.charAt( 0 ); // @todo invoke passed in handler if any
if ( lineFirstChar === '#' ) continue;
if ( lineFirstChar === 'v' ) {
const data = line.split( _face_vertex_data_separator_pattern );
switch ( data[ 0 ] ) {
case 'v': state.vertices.push( parseFloat( data[ 1 ] ), parseFloat( data[ 2 ] ), parseFloat( data[ 3 ] ) );
if ( data.length >= 7 ) {
_color.setRGB( parseFloat( data[ 4 ] ), parseFloat( data[ 5 ] ), parseFloat( data[ 6 ] ) ).convertSRGBToLinear();
state.colors.push( _color.r, _color.g, _color.b );
} else {
// if no colors are defined, add placeholders so color and vertex indices match
state.colors.push( undefined, undefined, undefined );
}
break;
case 'vn': state.normals.push( parseFloat( data[ 1 ] ), parseFloat( data[ 2 ] ), parseFloat( data[ 3 ] ) ); break;
case 'vt': state.uvs.push( parseFloat( data[ 1 ] ), parseFloat( data[ 2 ] ) ); break;
}
} else if ( lineFirstChar === 'f' ) {
const lineData = line.slice( 1 ).trim(); const vertexData = lineData.split( _face_vertex_data_separator_pattern ); const faceVertices = []; // Parse the face vertex data into an easy to work with format
for ( let j = 0, jl = vertexData.length; j < jl; j ++ ) {
const vertex = vertexData[ j ];
if ( vertex.length > 0 ) {
const vertexParts = vertex.split( '/' ); faceVertices.push( vertexParts );
}
} // Draw an edge between the first vertex and all subsequent vertices to form an n-gon
const v1 = faceVertices[ 0 ];
for ( let j = 1, jl = faceVertices.length - 1; j < jl; j ++ ) {
const v2 = faceVertices[ j ]; const v3 = faceVertices[ j + 1 ]; state.addFace( v1[ 0 ], v2[ 0 ], v3[ 0 ], v1[ 1 ], v2[ 1 ], v3[ 1 ], v1[ 2 ], v2[ 2 ], v3[ 2 ] );
}
} else if ( lineFirstChar === 'l' ) {
const lineParts = line.substring( 1 ).trim().split( ' ' ); let lineVertices = []; const lineUVs = [];
if ( line.indexOf( '/' ) === - 1 ) {
lineVertices = lineParts;
} else {
for ( let li = 0, llen = lineParts.length; li < llen; li ++ ) {
const parts = lineParts[ li ].split( '/' ); if ( parts[ 0 ] !== '' ) lineVertices.push( parts[ 0 ] ); if ( parts[ 1 ] !== '' ) lineUVs.push( parts[ 1 ] );
}
}
state.addLineGeometry( lineVertices, lineUVs );
} else if ( lineFirstChar === 'p' ) {
const lineData = line.slice( 1 ).trim(); const pointData = lineData.split( ' ' ); state.addPointGeometry( pointData );
} else if ( ( result = _object_pattern.exec( line ) ) !== null ) {
// o object_name
// or
// g group_name
// WORKAROUND: https://bugs.chromium.org/p/v8/issues/detail?id=2869
// let name = result[ 0 ].slice( 1 ).trim();
const name = ( ' ' + result[ 0 ].slice( 1 ).trim() ).slice( 1 ); state.startObject( name );
} else if ( _material_use_pattern.test( line ) ) {
// material
state.object.startMaterial( line.substring( 7 ).trim(), state.materialLibraries );
} else if ( _material_library_pattern.test( line ) ) {
// mtl file
state.materialLibraries.push( line.substring( 7 ).trim() );
} else if ( _map_use_pattern.test( line ) ) {
// the line is parsed but ignored since the loader assumes textures are defined MTL files
// (according to https://www.okino.com/conv/imp_wave.htm, 'usemap' is the old-style Wavefront texture reference method)
console.warn( 'THREE.OBJLoader: Rendering identifier "usemap" not supported. Textures must be defined in MTL files.' );
} else if ( lineFirstChar === 's' ) {
result = line.split( ' ' ); // smooth shading
// @todo Handle files that have varying smooth values for a set of faces inside one geometry,
// but does not define a usemtl for each face set.
// This should be detected and a dummy material created (later MultiMaterial and geometry groups).
// This requires some care to not create extra material on each smooth value for "normal" obj files.
// where explicit usemtl defines geometry groups.
// Example asset: examples/models/obj/cerberus/Cerberus.obj
/* * http://paulbourke.net/dataformats/obj/
* * From chapter "Grouping" Syntax explanation "s group_number": * "group_number is the smoothing group number. To turn off smoothing groups, use a value of 0 or off. * Polygonal elements use group numbers to put elements in different smoothing groups. For free-form * surfaces, smoothing groups are either turned on or off; there is no difference between values greater * than 0." */
if ( result.length > 1 ) {
const value = result[ 1 ].trim().toLowerCase(); state.object.smooth = value !== '0' && value !== 'off';
} else {
// ZBrush can produce "s" lines #11707
state.object.smooth = true;
}
const material = state.object.currentMaterial(); if ( material ) material.smooth = state.object.smooth;
} else {
// Handle null terminated files without exception
if ( line === '\0' ) continue; console.warn( 'THREE.OBJLoader: Unexpected line: "' + line + '"' );
}
}
state.finalize(); const container = new THREE.Group(); container.materialLibraries = [].concat( state.materialLibraries ); const hasPrimitives = ! ( state.objects.length === 1 && state.objects[ 0 ].geometry.vertices.length === 0 );
if ( hasPrimitives === true ) {
for ( let i = 0, l = state.objects.length; i < l; i ++ ) {
const object = state.objects[ i ]; const geometry = object.geometry; const materials = object.materials; const isLine = geometry.type === 'Line'; const isPoints = geometry.type === 'Points'; let hasVertexColors = false; // Skip o/g line declarations that did not follow with any faces
if ( geometry.vertices.length === 0 ) continue; const buffergeometry = new THREE.BufferGeometry(); buffergeometry.setAttribute( 'position', new THREE.Float32BufferAttribute( geometry.vertices, 3 ) );
if ( geometry.normals.length > 0 ) {
buffergeometry.setAttribute( 'normal', new THREE.Float32BufferAttribute( geometry.normals, 3 ) );
}
if ( geometry.colors.length > 0 ) {
hasVertexColors = true; buffergeometry.setAttribute( 'color', new THREE.Float32BufferAttribute( geometry.colors, 3 ) );
}
if ( geometry.hasUVIndices === true ) {
buffergeometry.setAttribute( 'uv', new THREE.Float32BufferAttribute( geometry.uvs, 2 ) );
} // Create materials
const createdMaterials = [];
for ( let mi = 0, miLen = materials.length; mi < miLen; mi ++ ) {
const sourceMaterial = materials[ mi ]; const materialHash = sourceMaterial.name + '_' + sourceMaterial.smooth + '_' + hasVertexColors; let material = state.materials[ materialHash ];
if ( this.materials !== null ) {
material = this.materials.create( sourceMaterial.name ); // mtl etc. loaders probably can't create line materials correctly, copy properties to a line material.
if ( isLine && material && ! ( material instanceof THREE.LineBasicMaterial ) ) {
const materialLine = new THREE.LineBasicMaterial(); THREE.Material.prototype.copy.call( materialLine, material ); materialLine.color.copy( material.color ); material = materialLine;
} else if ( isPoints && material && ! ( material instanceof THREE.PointsMaterial ) ) {
const materialPoints = new THREE.PointsMaterial( { size: 10, sizeAttenuation: false } ); THREE.Material.prototype.copy.call( materialPoints, material ); materialPoints.color.copy( material.color ); materialPoints.map = material.map; material = materialPoints;
}
}
if ( material === undefined ) {
if ( isLine ) {
material = new THREE.LineBasicMaterial();
} else if ( isPoints ) {
material = new THREE.PointsMaterial( { size: 1, sizeAttenuation: false } );
} else {
material = new THREE.MeshPhongMaterial();
}
material.name = sourceMaterial.name; material.flatShading = sourceMaterial.smooth ? false : true; material.vertexColors = hasVertexColors; state.materials[ materialHash ] = material;
}
createdMaterials.push( material );
} // Create mesh
let mesh;
if ( createdMaterials.length > 1 ) {
for ( let mi = 0, miLen = materials.length; mi < miLen; mi ++ ) {
const sourceMaterial = materials[ mi ]; buffergeometry.addGroup( sourceMaterial.groupStart, sourceMaterial.groupCount, mi );
}
if ( isLine ) {
mesh = new THREE.LineSegments( buffergeometry, createdMaterials );
} else if ( isPoints ) {
mesh = new THREE.Points( buffergeometry, createdMaterials );
} else {
mesh = new THREE.Mesh( buffergeometry, createdMaterials );
}
} else {
if ( isLine ) {
mesh = new THREE.LineSegments( buffergeometry, createdMaterials[ 0 ] );
} else if ( isPoints ) {
mesh = new THREE.Points( buffergeometry, createdMaterials[ 0 ] );
} else {
mesh = new THREE.Mesh( buffergeometry, createdMaterials[ 0 ] );
}
}
mesh.name = object.name; container.add( mesh );
}
} else {
// if there is only the default parser state object with no geometry data, interpret data as point cloud
if ( state.vertices.length > 0 ) {
const material = new THREE.PointsMaterial( { size: 1, sizeAttenuation: false } ); const buffergeometry = new THREE.BufferGeometry(); buffergeometry.setAttribute( 'position', new THREE.Float32BufferAttribute( state.vertices, 3 ) );
if ( state.colors.length > 0 && state.colors[ 0 ] !== undefined ) {
buffergeometry.setAttribute( 'color', new THREE.Float32BufferAttribute( state.colors, 3 ) ); material.vertexColors = true;
}
const points = new THREE.Points( buffergeometry, material ); container.add( points );
}
}
return container;
}
}
THREE.OBJLoader = OBJLoader;
} )();
|